PHYSICAL REVIEW E

VOLUME 51, NUMBER 3

MARCH 1995

Development of quantum nonintegrability displayed in effective Hamiltonians:
A three-level Lipkin model

Xu Gong-ou
Department of Physics, Nanjing University, Nanjing 210008, China;
Department of Modern Physics, Lanzhou University, Lanzhou 730000, China;
National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China;
and Institute of Nuclear Research, Shanghai, Academia Sinica, Shanghai 201800, China

Gong Jiang-bin
Department of Physics, Nanjing University, Nanjing 210008, China

Wang Wen-ge
Institute of Nuclear Research, Shanghai, Academia Sinica, Shanghai 201800, China

Yang Ya-tian
Department of Physics, Fujian Normal University, Fuzhou 350007, China

Fu De-ji
China Center of Advanced Science and Technology (World Laboratory), Beijing, China
and Institute of Nuclear Research, Shanghai, Academia Sinica, Shanghai 201800, China
(Received 4 February 1994; revised manuscript received 20 June 1994)

The transition to chaos as the development of global nonintegrability in a three-level Lipkin model is
investigated numerically. With effective Hamiltonians for different energy regions it is possible to study
local statistical behaviors of the system in the corresponding energy regions. Behaviors of its classical
counterparts are also given for comparison. The dynamical origin of statistical properties of effective
Hamiltonian matrices is qualitatively explained. The question of what are the members of the Gaussian

orthogonal ensemble is also discussed.
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I. INTRODUCTION

It is well known, for autonomous quantum systems
with their classical counterparts fully chaotic that the
statistical properties of the energy spectra are predicted
by the Gaussian orthogonal ensemble (GOE) [1]. There
are also good arguments to associate regular spectra with
classical integrable systems [2]. If the Hamiltonian H° is
completely integrable and H gives GOE statistics, then
the statistics for the eigenenergies of the Hamiltonian

H(A)=H°+AMH—H° (1)

become different from the Wigner distribution and closer
to the Poisson distribution as A decreases from 1 to O.
The dynamics of the intermediate regime is still poorly
understood [3] because the universal theory of random
matrices gives us no clue concerning the connection of
the two types of statistics. The deviation from GOE
statistics merely indicates that the relevant Hamiltonian
matrices fail to meet the requirements of GOE.

Berry and Robnik [4], based on semiclassical con-
siderations, suggested that the intermediate statistics are
due to the coexistence of integrable and nonintegrable re-
gions and can be explained as a superposition of the two
kinds of well-known statistics; while Brody [5] introduced
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phenomenologically the spacing distribution just interpo-
lating between the Poisson and Wigner distribution by in-
troducing an interpolation parameter.

Recently, such deviations from GOE statistics were ex-
plained in more detail as due to partial integrability of
systems H(A) and characterized with the mean v of the
x? distribution of eigenvectors together with the mean
Lyapunov exponent of the classical limit [6], or with the
mean distributedness of eigenvectors [7]. Since conven-
tional statistical analyses for schematic models always
cover all the eigenstates, corresponding mean values have
to be introduced to take into account the different local
dynamical properties of Hamiltonian systems. Different
from schematic models, local dynamical properties were
always emphasized for cases of experimental nuclear
data. Haq, Pandey, and Bohigs [8] analyzed the whole
body of high-quality data, 1407 resonances corresponding
to 30 sequences of 27 different nuclei. Astonishingly
good agreement was found between the experimental
data and the GOE statistics. On the other hand, Garrett
et al. [9] analyzed spectra of rare-earth nuclei in the vi-
cinity of the yrast line and found near-Poissonian statis-
tics indicating the regular motion of collective rotational
bands.

Several authors have already noticed these points.
Brown and Bertsch [10] tried to determine to what extent
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a realistic nuclear Hamiltonian can be viewed as just a
representative of a random matrix ensemble by investi-
gating the distribution of basis-vector amplitudes in real-
istic s-d shell-model eigenfunctions, but they concluded
that the shell-model Hamiltonian does not look at all like
a representative of the random matrix ensemble. It has
been suggested [11,12] that a useful parameter for deter-
mining the applicability of random matrix results is the
ratio of the rms value of the off-diagonal matrix element
to the average level spacing; while Meredith, Koonin,
and Zirnbauer [13] studied in detail the connection be-
tween chaotic classical motion and quantum spectral and
overlap statistics. However, the question of what is a
member of the random matrix ensemble is still
unanswered.

Considering the above-mentioned points together, we
take the effective Hamiltonians for different energy re-
gions of systems with respective local mean properties re-
moved by an unfolding process as members of GOE and
examine whether they fulfill the following two statistical
requirements: (a) all the independent elements of the
Hermitian matrix are independent random variables; (b)
the randomness property is invariant to arbitrary orthog-
onal transformations. The effective Hamiltonians related
to different energy regions are explicitly obtained with a
decoupling transformation, and then their randomness
properties are studied with eigenvector statistics. Based
on numerical results, we are able to confirm that the un-
folded effective Hamiltonian matrices are really members
of GOE and conclude further that the quantum manifes-
tation of the classical transition from regularity to chaos
is characterized by the broadening of the energy region
over which the effective Hamiltonians are all random.

There remains the problem of what is the dynamical
origin of the randomness of effective Hamiltonian ma-
trices. This is answered with the dynamical property of
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global nonintegrability. Hence the transition from order
to chaos can be regarded as a manifestation of the devel-
opment of global nonintegrability.

This article is organized as follows. In Sec. II, the
nearest neighbor spacing statistics for the energy spectra
of a three-level Lipkin model [14] are presented. In Sec.
II1, the effective Hamiltonian matrices for different ener-
gy intervals of the system H(A) and their statistical
behaviors are studied. In Sec. IV, parallel results of the
classical counterparts for demonstrating the quantum
classical correspondence are given. In Sec. V, the statisti-
cal requirements of GOE are discussed from the dynami-
cal properties of global nonintegrability of the systems.
Conclusions are given in the last section.

II. SPECTRAL STATISTICS OF H(A)

The Hamiltonian of the three-level Lipkin model is of
the following form:

HM=H°+MH—H° , )
H°=¢,K |, +€,Ky—K,)(KyK,+H.c.), (3)
H—H= —k,(K (Ko +H.c.)+u (K, Ky+H.c.)

+u,(K ,K o +H.c.) , )
where
Q
K;= Y alaj, i,j=0,1,2 (5)
a=1
6=1.0, &=1.6 k;=0.13, k,=0.21, ©

©y=0.23, 1,=0.183, Q=30.

The number of particles is taken as 30. Only collective
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FIG. 1. The nearest neighbor statistics
P(s,A) of the system H(A) for (a) A=0.08; (b)
A=0.24; (c) A=0.48; (d) A=0.78.
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motions based on the ground state are considered.
Therefore the dynamical group is the SU(3) group. The
Hamiltonian is time-reversal invariant.

In Fig. 1, the transition of the spectral statistics is illus-
trated. When the perturbation strength represented by A
is small, the nearest neighbor spacing statistics show reg-
ular properties. Then with the increasing of A, the spec-
tral statistics fit the theoretical distributions predicted by
GOE better and better. Obviously when A is larger than
0.78, the generic behaviors of the model Hamiltonian can
be well described by the random-matrix theory. In fact,
as we will see, this case corresponds to a fully chaotic
classical limit.

III. EFFECTIVE HAMILTONIAN MATRICES
AND THEIR STATISTICAL PROPERTIES

Suppose |¢7) are eigenstates of H? and |¢;(1)) are
eigenstates of H(A) with eigenvalues E;(A). |¢;(1)) vary
continuously with A and satisfy the following condition:

. — 0
(}%wim) 149 . ©)

Thus the above two sets of eigenstates have a one to one
correspondence. From them we can define an orthogonal
transformation U(A,0) as follows:

U(A,0)=T[¢,(A))(4?] . (8)
With such an orthogonal transformation, the Hamiltoni-
J

an matrix is diagonalized.

3 {(#91UT(2,0)189 ) CSPLH(A)$% Y (2| U(,0)/49)
k1

=E(M8; . (9)

In order to show the local behavior of the energy spec-
trum, we divide the whole N-dimensional Hilbert space
into K energy regions with AN eigenstates of H(A) in
each energy region, and try to obtain the effective Hamil-
tonian matrix in block form with each block for each en-
ergy region. This can be achieved by the decoupling
transformation [15], or speaking alternatively, by the
coset resolution of the orthogonal transformation matrix
U(A,0)=U,;(A)U,.(A,0) where U(A,0) and U,;(A) are ele-
ments of the SO(N) group and SO(AN)
®SO(AN)® - - - ® SO(AN) subgroup respectively, while
U.(A,0) is an element of the quotient SO(N)/
[SO(AN)® ‘- - ®SO(AN)]. The number of independent
matrix elements of U(A,0), U;(A), and U,(A,0)
are IN(N+1), (K/2)AN(AN+1), and LIN(N+1)
—(K /2)AN(AN +1), respectively. If the orthogonal
transformation matrix U(A,G, is given, matrices U;(A)
and U,(A,0) are uniquely determined. We define

[ (M) =U.(1,0)|¢2 ) . (10)

With the resolution and the completeness relation
S lm Y {me|=1, Eq. (9) can be rewritten as

3 (OITT ) 7)Y Cy A H R |7 (A g (DT, (M) |1 (A) Y =E; 8 (11)

k1

Since {1;(A)|H(A)|n,(A)) is diagonalized with the trans-
formation matrix {7, (A)|U;(A)|n,(A) which is in block
form, {(n;(AM|H(A)|n (X)) must be a block matrix.
Hence in the representation 7;(A).

H()\«)ZHeﬁ;l(k)@Hemz()\.)e T, (12)
where
Hq,(M)=(q(M[HM) (X)), LkE[p] (13)

are just the required effective Hamiltonians for different
energy regions.

From Eqgs. (10)—(13) we see clearly that |7,(1)) form
the bases of the decoupled representation and U,.(A,0) is
the corresponding decoupling transformation. Based on
this fact, we would try to determine |7;,(A)) (k in energy
region u) with the projection operator

P,(M)=3 [¢;(A0)){¢;(A)| . (14)

i€[p]

A set of orthogonal states is generally not orthogonal
after the projection. It is only possible for a special set of
orthogonal states to keep their orthogonality after the
projection. Let

r

162)="3 CPl¢?), a=1,...,ANE[p] (15)

i€[pu]

be such a set of orthogonal states in the corresponding
subspace defined by

P0)=3 [ (= 3 [42)(gal . (16)
i€[p] a€[u]

Obviously, we have the following orthogonality and com-
pleteness relations:

> CiCP=8, , 17
i€(p]
EE[ ]Ciacf=5ij . (18)
a€[u

Requiring that P,(A)|¢2 ) and P,(1)|4} ) remain orthog-
onal,

(#3IP,(MP,(M)]83)=(3|P,(A)|$3)=1,(1)8,, ,

19)
we have
S CH@IIP, (M) CI=1,(1)8y, . (20)
j’ke[l‘]
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Multiplying both sides by C? and summing over b, we
have

S (SRUP, (M) CP=1,(A)CE .

i€p]

(21)

Solving the set of equations, we obtain the corresponding
two sets of orthonormal states |¢2 ) and |¢,(1)), where

|6 (A)) =[1,(M)]72P,(M)[49) . (22)
P, (1) in (14) can then also be written as
P, (M= 3 (¢, (A) (¢, (M)] . 23)

a€lp]

The same process can be carried out for all energy re-
gions to obtain the corresponding set of orthonormal
states |¢2 ) and |¢,(A)) for all energy regions. Thus the
decoupling transformation U,(A,0) in (10) can be ex-
pressed as

U.(A,0)=3 ¢, (1) ){(42] . 24)

In determining U,(A,0), only the projection operators
P, (L) for different energy regions have been used.
Though all the states |¢;(A)) have been involved, they
appear in the projection operator P,(A) not individually.
P#(k) can be written in different forms, e.g., as (14) and
(23). Hence U.(A,0) thus determined involves only
sN(N+1)—(K/2)AN(AN+1) independent elements.
In short, U.(A,0) is determined merely from the geome-
trical relation between the corresponding subspaces
defined by P,(A) and P, (0), leaving the further diagonal-
ization of the effective Hamiltonian perfectly to the or-
thogonal transformation U,;(A). In this way, the decou-
pled representation is closest to the original integrable H°
representation and farthest from the eigenrepresentation
of H(A).

Having obtained the effective Hamiltonian in the
decoupled representation for different energy regions, the
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eigensolutions can be readily found. The eigenenergies
E;()L) are representation independent, though the eigen-
states of H ., (1) are expressed as

licruA)) =3 In;(A)){n;(R)]¢; (1)) .

JE[u]

(25)

In fact, (n;(1)|¢;(1)) can be calculated from results of
|¢:(A)) and |7;(A)) in the original H® representation;
the further diagonalization of the localized effective
Hamiltonian matrices is unnecessary.

There remains the problem of whether H g, (1) can be
treated as members of the (GOE). In principle, both the
eigenenergies and eigenstates can be used for answering
the above question. But the eigenstates have many more
independent elements than the eigenenergies, and can
therefore be analyzed statistically for each energy region
individually. Moreover, for answering the above ques-
tion, it is only necessary to compare the statistical distri-
bution of the magnitude of (7;(1)[¢;(A)) or
[{n,(A\)]¢;(1))|? with that of completely random vari-
ables. Such a comparison should be performed with a
representation sufficiently far away from the eigen-
representation of H(A). The decoupled representation
closest to the original integrable H° representation and
farthest from the eigenrepresentation of H(A) is of course
the best choice. However, other decoupled representa-
tions sufficiently different from the eigenrepresentation of
H(A,0) also serve the purpose. We have also considered
a decoupled representation determined by the projection
operators P,(A) together with the Schmidt method of or-
thogonalization for eigenvector analyzes; the results are
almost unaltered.

Results of 2 analyses of eigenvectors localized in
different energy regions are shown in Figs. 2-5 corre-
sponding to four values of A, respectively. Three typical
energy regions with the mean energy around 20.0, 55.0,
and 75.0 are chosen for each ease. The effective Hamil-
tonians are all 31 dimensional. For the case A=0.08 in
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FIG. 2. Histograms of distributions for the components of eigenvectors of effective Hamiltonians related to different energy re-
gions for the case A=0.08. The effective Hamiltonian for a certain energy region is 31 dimensional. The solid lines denote the 32—,
distribution. Graphs denoted by (a), (b), and (c) are for effective Hamiltonians with the mean energy around 20.0, 55.0, and 75.0, re-

spectively.
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FIG. 6. Spectral statistics for two groups of
chosen effective Hamiltonians. (a) is for those
whose eigenvector statistics deviate far from
the Porter-Thomas distribution. (b) is for those
whose eigenvector statistics agree with the
Porter-Thomas distribution. The solid lines
denote Poission distribution in (a) and Wigner
distribution in (b).

R5 .
2 3 .
r (a') :1 E
15 H J 3
OB ] @ ]
(¥ lj ] A, ]
A ] ]
05 [ 3 ]
c ] 1
OLJ_U aaal 1] o

0 1 2 3 4

S S

Fig. 2, the statistical fluctuations of eigenstates of the
effective Hamiltonians related to those three energy re-
gions are all far away from the Porter-Thomas distribu-
tion. For the case A=0.24 in Fig. 3, the statistics for the
energy region with mean energy 20.0 come to agree well
with the y2_, distribution, but things about the other two
effective Hamiltonians still have little change. In Fig. 4,
A=0.48, only one energy region gives eigenstate statistics
deviating evidently from the y2_, distribution. At last,
in Fig. 5, A=0.78, the eigenstates statistics of the three
effective Hamiltonians all show the y2_, distribution.
These results conform with the transition of the spectral
statistics from regularity to chaos shown in Fig. 1.

On the other hand, it is difficult to carry out the statist-
ical fluctuations of the eigenvalues of a certain effective
Hamiltonian because the dimension is only 31. However,
this kind of trouble can be solved by doing the statistical
analyses for data from different effective Hamiltonians.
Of course, the unfolding process is necessary here. In
this way we obtain two types of spectral statistics for two
groups of effective Hamiltonians. Figure 6(a) is the result
for the effective Hamiltonians corresponding to the histo-
grams in Figs. 2(b), 2(c), 3(b), 3(c), and 4(c), all of which
give the eigenvector statistics far away from the Porter-
Thomas distribution. As expected, the special statistics
obey the Poisson distribution. Analogously, the Wigner
distribution in Fig. 6(b) is the result of those effective
Hamiltonians whose eigenvector statistics obey the y2_,
law. The results of Figs. 6(a) and 6(b) assure us that there
are really two types of effective Hamiltonians giving
different types of spectral statistics, respectively.

Now we draw the following conclusions.

I

(i) The effective Hamiltonians related to different ener-
gy regions may have distinct statistical behaviors.
Effective Hamiltonians having distinct statistical proper-
ties may coexist in the same system.

(ii) The effective Hamiltonians giving the y2_, distribu-
tion of eigenvector statistics have spectral distributions of
the GOE type, while the effective Hamiltonians giving
X2, distribution of eigenstate statistics have spectral dis-
tribution of the Poissonian type.

(iii) Since the randomness property shown by the eigen-
vector statistics of the y2_, distribution is practically
basis independent, the corresponding effective Hamiltoni-
ans do fulfill the two requirements of GOE.

(iv) Comparing the results with those in Sec. II, we find
that the transition of the spectrum from regularity to ir-
regularity is consistent with the broadening of the energy
region over which the statistical properties of the
effective Hamiltonians are all random. The intermediate
case of the spectral statistics corresponds to the coex-
istence of effective Hamiltonians with different types of
statistical behaviors.

IV. INVESTIGATIONS OF THE CLASSICAL
COUNTERPARTS

The main aim of this section is to provide comparisons
of the behaviors in different energy regions between the
corresponding classical and quantum cases.

To get the classical counterparts of the quantum sys-
tem H(A) given by (2)—-(6), we first write the Hamiltoni-
an in the boson representation[16],

172 172
H'=¢,b1b, +e,01b, — 1,0 b’{[l—é—};bibi b} 1-%21;,.*1),. +H.c.], (26)
i i
1 172 1 172
V=H—H’=—k,Q bI’l—a—zb,Tb,. bl 1——9—21;,.*17,. +H.c.
i i
o 1 172 . 1 172
+pu,VQ [b}‘b’{b}‘[l—ﬁzbfb,.’ +H.c. | +u,VQ bIbIbI'l—Ezb,Tb,. +H.c.}. @7
i i

where
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t1= —rpt pT1=
[b,b]1=5,;[b;,b;1=1b],b]1=0 .

After transforming the boson creation and annihilation operators b,-T, b; to g;,p; with

bI=V'Q/2(q;—ip;), b;=VQ/2g;+ip;), i,j=1,2
we have
i

[qz':Pj]=5"8ij ,

(30)

so 1/Q gives us a measure of the quantal effect. If we treat operators g;,p; as commutable numbers, i.e., let the particle

number () become infinitely large while keeping the following

€=¢€,Q, =60, K=k Q?,

’ 2 ' 2 ' 2 (31)
Ky =100 =p Q% py=p,Q%,
as constants, the classical counterparts are obtained:
H.(AM)=H’+AV, , 32)
’ ’ 2 2 2 2
€] € , pitqitpi+q;
BO= o1 +ah+ 23 +ad —xip3—ad) [1- 210 : 33
24 .24 .24 2 , 2402422 1172
, pitgi+pi;t+q; 23! pitqi+pi+q;
V.=—ki(pi—q}) |1— 5 t5 [(p3—43)p1+2p2929:] |1— 5
/ 24 24 2, 2 |12
M2 pitqitp;+q;
+ 51T —alpat2p1914:] |1- 5 34)

In order to show the existence or nonexistence of the
Kolmogorov-Arnold-Moser (KAM) tori clearly, we use
the Poincaré map to investigate the dynamical properties.
As illustrated in Figs. 7-10, numerical results in three
different energy surfaces with four values of the parame-
ter A are presented. The energy surfaces are chosen to
have the same energies as mean energies of the three typi-
cal effective Hamiltonians in Sec. III. For the case
A=0.08 in Fig. 7, almost all the KAM tori are kept. As
the perturbation increases to A=0.24 in Fig. 8, we see

that most of the KAM tori on the energy surface 20.0 are
destroyed while those in the other two energy surfaces
are only distorted. When A=0.48 in Fig. 9, more tori
disappear showing the growth of nonintegrability. For
the case A=0.78 in Fig. 10, with some other detailed nu-
merical results, we find the system is fully chaotic.
Striking, we find good quantum-classical correspon-
dence when comparing the Poincaré maps in Figs. 7-10
with the x2 analyses of eigenvectors of the effective Ham-
iltonians in Figs. 2—5. The y2_, distribution for eigen-
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1 E © 1 ]
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FIG. 7. The Poincaré sections of trajectories for the classical limit of the three-level Lipkin model in the g, —p, plane with p; >0
for the case A=0.08. Graphs denoted by (a), (b), and (c) are on the energy surfaces with the energies equal to 20.0, 55.0, 75.0, respec-

tively.
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vectors of the effective Hamiltonians are just the local
quantum signatures of classical nonintegrability on corre-
sponding energy surfaces, and the evident deviations
from the Porter-Thomas distribution imply that almost
all KAM tori of the classical counterparts in the relevant
energy surfaces remain undestroyed.

The results of this section not only confirm the ap-
propriateness of using effective Hamiltonian matrices for
different energy regions to study the transition from regu-
larity to chaos, but also suggest that the broadening of
the energy region over which the statistical properties of
the effective Hamiltonians are all random is closely relat-
ed to the development of global nonintegrability as in
classical mechanics. We shall discuss this problem in de-
tails in the next section.

V. WHAT IS THE DYNAMICAL BASIS OF GOE?

We shall show in this section that the statistical prop-
erties of effective Hamiltonian matrices just come from
the dynamical properties of global nonintegrability. We
first give an overview about discussions on complete in-
tegrability and nonintegrability from our recent articles
[15,17].

A system is said to be completely integrable if there ex-
ists a complete set of commuting integrals of motion cor-
responding to a certain subgroup chain of the dynamical
group. In such cases the eigenstates |¢;(A)) of H(A) can
be connected to the initial conditions |¢?) with a quan-
tum canonical transformation [17]. The eigenstates
|¢;(1)) retains the main characteristics of [¢?) and can
be designated with the same quantum numbers as for
|¢?); thus H(A) has the same dynamic symmetry as H°.

If there exists perturbation violating the dynamic sym-
metry, the quantum canonical transformation breaks first
at the critical point A, for a pair of states mixing strongly
with each other. The once broken quantum canonical
transformation breaks further at subsequent critical
points A,,As, ... for other pairs of states. If these pairs
of states overlap with each other and extend to a global
region, such states mixing strongly with each other can
only be connected to corresponding initial states with a
transformation in a very complicated form involving a
very large number of parameters. As a result they are
very complicated in nature.

We should note that the above statement refers to an
integrable Hamiltonian H® corresponding to a definite
subgroup chain. A system which is not integrable in
reference to a certain subgroup chain may still be integra-
ble in reference to another subgroup chain. But a system
is nonintegrable in a global region only if the system is
not integrable in this region with respect to all subgroup
chains.

The information entropy

S;=— 3 1% (A)) 2| {491 (1)) |2 (35)
k
for eigenvectors is a good measure of their respective dis-

tributedness. The distributedness M of eigenvectors in a
certain energy region can be estimated with the following
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expression [18]:

v
X+
STl

M=2exp |[S+W¥

} , (36)

where S denotes the mean value of S; in the energy region
and W((v/2)+1) is the diagamma function. v=1 for
time-reversal invariant systems. The effective Hamiltoni-
an for a AN-dimensional energy region obtained with the
decoupling transformation has already carried informa-
tion from states lying outside the region but strongly cou-
pled to those inside the region. If AN << M, the effective
Hamiltonian of the region should be in a very complicat-
ed form involving a large number of parameters much
exceeding the number of independent elements of the
effective Hamiltonian matrix. The elements of the
effective Hamiltonian matrix will then appear as uncorre-
lated random quantities. On the other hand, AN cannot
be chosen arbitrarily small. In order to deal with proper-
ties of eigenstates in the region statistically, we must have
1<<AN. Hence there exists a condition for the random-
ness of effective Hamiltonian matrices

1<<AN <M . (37)

The calculated results of distributedness for different
model parameters and different energy regions corre-
sponding to Figs. 2-5 are given in Table I. Noticing
AN =31 for the present case, we see clearly that for ener-
gy regions corresponding to Figs. 3(a), 4(a), 4(b), 5(a),
5(b), 5(c) with the statistics of eigenvectors of the corre-
sponding effective Hamiltonians obeying the Porter-
Thomas distribution, the condition (37) is indeed
satisfied, while for regions corresponding to Figs. 2(a),
2(b), 2(c), 3(b), 3(c), 4(c) having quite different features,
M < AN, the condition (37) is not satisfied.

Moreover, the introduction of the effective Hamiltoni-
an is also essential for removing the smoothly varying
mean properties of subregions inside the same nonintegr-
able region. If M is sufficiently large comparable with N,
it is unsuitable to consider just the effective Hamiltonian
in this M-dimensional subspace. The eigensolutions in
this region have lost all possible regularities except their
mean properties which still vary smoothly in this region.
Of course the eigenenergies should be unfolded. Besides,
the eigenstates may have their components distributed al-
most randomly over the whole space but more or less

TABLE I: The averaged distributedness M of eigenvectors in
three energy regions for four values of the parameter A, the
same as in Figs. 2-5.

Parameters E=75.0 E=55.0 E=20.0
A=0.08 6.7 11.0 44.2
A=0.24 29.8 77.6 192.4
A=0.48 99.2 199.6 299.5
A=0.78 204.4 311.6 375.5
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concentrated at their original locations. Only after these
local mean properties have been removed with the ap-
propriate unfolding process, can the eigenenergies and
eigenvectors be treated as random quantities.

As eigenenergies and eigenvectors are obtained at the
same time, the unfolding process for eigenvectors should
conform with that for eigenenergies. This can be attained
by considering the effective Hamiltonians in different en-
ergy regions. Then the variation of local mean properties
of eigenvectors viewed from the M-dimensional subspace
no longer appears in the analyses of eigenvectors in the
AN-dimensional regions. Suppose D, is the mean energy
spacing of region u. We define the unfolded effective
Hamiltonians as follows:

Hug 2=~ Hen, )=, 11 38)

Now H o, for different regions have only random prop-
erties besides the common mean energies and mean ener-
gy spacings and can be treated as members of GOE. This
provides a precise understanding of the random-matrix
theory.

To end this section, we should like to refer to the paper
by Meredith, Koonin, and Zirnbauer [13]. In a similar
three-level Lipkin model, they found systematic devia-
tions from GOE in the statistics of eigenvector overlaps
with original basis states while the eigenvalue statistics
are in good agreement with GOE. According to our cal-
culations, this dilemma can be resolved by using the
effective Hamiltonians. Then, both the eigenvalue statis-
tics and the eigenvector statistics agree with GOE.

VI. CONCLUSIONS

Now we draw conclusions based on the above-
mentioned numerical results as follows.

(i) In treating the eigenvectors and eigenenergies sta-
tistically, effective Hamiltonians for different energy re-
gions should be introduced such as to distinguish integra-
ble and partly integrable regions from chaotic ones and to
remove the smoothly varying mean properties.

(i) The unfolded effective Hamiltonians H eff,u fOT
nonintegrable regions having only random properties be-
sides the common mean energy and mean level spacings
are taken as members of GOE. With them, spectral
statistics and eigenvector statistics are obtained in good
correspondence to parallel results of classical counter-
parts.

(iii) The randomness property of H off,, COmes basically
from dynamical properties of nonintegrability in the re-
gion u subject to the condition (37).

We should like to note that it requires further studies
to show whether our results are indeed universal by using
other models or by more elaborate theoretical considera-
tions. We are working in this direction.
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